Some Geotechnical Observations for Deep Excavations in Weak Rock

Peter Sharp Mott MacDonald

Scope

- Stratigraphy and Strength of Weak Rock Formations
 - Barziman Formation in Dubai
 - Dammam Formation in Doha
- In Situ Stress and Stiffness
- Ground Movement Prediction

Excavation Experiences

Name	Location	Туре	Depth (m)	Rock Formations	
Arabian Canal Trial Site – 2006 to 2009	Inland Dubai	2Mm ³ Open excavation	35	Gayathri and Barziman Formations (siliceous and carbonate type sandstones, siltstones, and mudstones)	
Mall of Emirates – Current	Coastal Dubai	Barrette Foundations	10	Barziman / Gayathri Formation – Sandstone	
Deep shaft – Current	Inland Abu Dhabi	Deep shaft	30	Fars Formation carbonate mudstones and gypsum.	
Central Doha Sites – Current	Doha 1 Doha 2	Open excavation and D wall support	Currently 5 to 20	Dammam Formation Simisma limestone, Midra Shale, and Eocene - Rus Formation - chalky limestones and siltstones	
New Doha International Airport – 2010 - 2011	Doha coast	Permanent D wall	20	Dammam Formation Simsima limestone, Midra Shale	

Key themes for deep foundation engineering

- Geological stratigraphy and strength stratigraphy
- In situ stress
- Rock stiffness
- Raft pile interaction
- Ground movement prediction
- Groundwater is not covered in this presentation

Stratigraphy

Geotechnica

2 0 1 3 equip^e

In partnership with Pinnacle Events

Geological Stratigraphy – Arabian Canal

Brunel

Rock Strength and Dry Density

Rock Strength from Instrumented Drilling

- Origins in Offshore oil drilling check on efficiency of drilling operations relative to rock strength
- Specific Energy = work done to drill unit volume of rock (MJ/m³ or MNm/m³) – Teale 1965
- Monitor bit pull down pressure, rate of penetration, applied torque, and rpm
- Good summary of technique by Okuchaba MSc dissertation, Texas A and M University, 2008
- SE = (vertical work + rotational work + hammer work)/unit volume
- SE approximately equates to Unconfined Compressive Strength

Cyclic Parameters - Arabian Canal (1)

Rock Strength – Arabian Canal

Cyclic Parameters - Doha 1 ?

Geotechnica

3

2 0 1 equip^e

In partnership with innacle Events

Gulf Laboratories Co. wu

Cyclic Parameters – Doha 2?

Geotechnica

3

0

1

2

equip^e

In partnership with innacle Events

Gold Sponsors Gu Gulf Laboratories Co. wu

In situ stress

Elevated Ko from:

- Overburden removal
- Sea level fluctuations
- Urban groundwater level rise
- Tectonic stress

Geotechnica

1 3

2 0

equip

Significant Ko reduction due to D Wall installation $K_{NDIA} = 0.36$

In partnership with

vents

Doha and Abu Dhabi

G

Platinum Soonsors

Gold Sponsors

SITES

TRADE&

Gulf Laboratories Co. wo

Supported by

Brunel

ice

In situ horizontal stiffness – Doha 1

In partnership with Pinnacle Events

equip^e

3

2 0

GULF Gulf Laboratories Co. wu

Gold Sponsors

Supported by

Brunel

SITES TRADER INVESTMENT

In situ horizontal stiffness – Doha 1

Raft – Pile Load Interaction

Doha 2 Site: 2 m thick raft underpinned by 1.5 m diameter piles on 6 m x 9 m grid carrying compression load within SF capacity of piles

Rock Stiffness	Pile Stiffness	% Load Share		
(GFa)	(GFa)	Rock	Piles	
5	30 to 50	90	10	
1	30 to 50	70	30	
0.5	30	50	50	

Ground Movement Prediction (1)

- Lack of case history data for comparable rock types
- NDIA station box 1.5 m wide diaphragm wall, L= 25 m, D = 20 within Simsima Limestone.
- Propped top down construction
- Initial settlement from diaphragm wall installation of up to 6 mm (4 m offset from walls).
- Settlement behaviour behind D wall is trough like.
- PLAXIS back analysis linear isotropic stiffness models do not work.
- Link ground movement to lateral wall
 movement

Ground Movement Prediction (2)

2

Ground Movement Prediction (3)

Findings

- Stratigraphy is important but strength stratigraphy may not match. Expect cyclic variation in density, strength and stiffness with depth.
- Adopt wider use of instrumented drilling as a strength profiling tool may prove important for anchored wall design. Increased value for money and reduced turnaround time for SI.
- Expect strength to correlate closely with in situ dry density and specific energy– profile density by down-hole geophysical methods and determine m/c profile carefully.
- Expect elevated Ko values but also large reductions in Ko due to installation effects.
- Expect non linear stiffness behaviour an important aspect in resolving pile raft load share interaction. Design territory will be very small strain in the foundations.
- Wall / behind wall movement predictions require non linear elastic models and/or an empirical basis of trough settlement form linked to wall lateral displacement.

Ground Movement Prediction (4)

